Exploring the Environment/Energy Pareto Optimal Front of an Office Room Using Computational Fluid Dynamics-Based Interactive Optimization Method
نویسندگان
چکیده
This paper is concerned with the development of a high-resolution and control-friendly optimization framework in enclosed environments that helps improve thermal comfort, indoor air quality (IAQ), and energy costs of heating, ventilation and air conditioning (HVAC) system simultaneously. A computational fluid dynamics (CFD)-based optimization method which couples algorithms implemented in Matlab with CFD simulation is proposed. The key part of this method is a data interactive mechanism which efficiently passes parameters between CFD simulations and optimization functions. A two-person office room is modeled for the numerical optimization. The multi-objective evolutionary algorithm—non-dominated-and-crowding Sorting Genetic Algorithm II (NSGA-II)—is realized to explore the environment/energy Pareto front of the enclosed space. Performance analysis will demonstrate the effectiveness of the presented optimization method.
منابع مشابه
Pareto Optimization of Two-element Wing Models with Morphing Flap Using Computational Fluid Dynamics, Grouped Method of Data handling Artificial Neural Networks and Genetic Algorithms
A multi-objective optimization (MOO) of two-element wing models with morphing flap by using computational fluid dynamics (CFD) techniques, artificial neural networks (ANN), and non-dominated sorting genetic algorithms (NSGA II), is performed in this paper. At first, the domain is solved numerically in various two-element wing models with morphing flap using CFD techniques and lift (L) and drag ...
متن کاملAn effective method based on the angular constraint to detect Pareto points in bi-criteria optimization problems
The most important issue in multi-objective optimization problems is to determine the Pareto points along the Pareto frontier. If the optimization problem involves multiple conflicting objectives, the results obtained from the Pareto-optimality will have the trade-off solutions that shaping the Pareto frontier. Each of these solutions lies at the boundary of the Pareto frontier, such that the i...
متن کاملXergy analysis and multiobjective optimization of a biomass gasification-based multigeneration system
Biomass gasification is the process of converting biomass into a combustible gas suitable for use in boilers, engines, and turbines to produce combined cooling, heat, and power. This paper presents a detailed model of a biomass gasification system and designs a multigeneration energy system that uses the biomass gasification process for generating combined cooling, heat, and electricity. Energy...
متن کاملOptimization of Heat Transfer Enhancement of a Domestic Gas Burner Based on Pareto Genetic Algorithm: Experimental and Numerical Approach
The present study attempts to improve heat transfer efficiency of a domestic gas burner by enhancing heat transfer from flue gases. Heat transfer can be augmented using the obstacles that are inserted into the flow field near the heated wall of the domestic gas burner. First, to achive the maximum efficiency, the insert geometry is optimized by the multi-objective genetic algorithm so that heat...
متن کاملAERO-THERMODYNAMIC OPTIMIZATION OF TURBOPROP ENGINES USING MULTI-OBJECTIVE GENETIC ALGORITHMS
In this paper multi-objective genetic algorithms were employed for Pareto approach optimization of turboprop engines. The considered objective functions are used to maximize the specific thrust, propulsive efficiency, thermal efficiency, propeller efficiency and minimize the thrust specific fuel consumption. These objectives are usually conflicting with each other. The design variables consist ...
متن کامل